PROPAGATION OF WEAK PERTURBATIONS IN TWO~PHASE
MEDIA WITH PHASE TRANSITIONS

A. I, Ivandaev and R. I, Nigmatulin

The linearized equations of fluid mechanics [1] and the equation of state of the phases are used to
investigate the propagation of weak perturbations in two~phase media which are a mixture of a gas and
drops or particles. Allowance is made for possible phase transitions. Thedependences of the wave vector
on the perturbation frequency are obtained. An estimate is made of the effect of mass exchange between the
phases on the nature of the dispersion relations. Some theoretical and experimental investigations devoted
to the propagation of sound in two-phase media have been made, for example, in [2-5]. Throughout the
paper the quantities that refer to the gas and the particles carry the subscripts 1 and 2, respectively., The
subscript 0 refers to the unperturbed state; the subscript 3 to the saturation state.

1. The equations of conservation of mass, momentum, and energy of the phases [1] take the following
form after linearization:
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Here p, p; i, and e are the perturbations of the mean density, pressure, enthalpy, and internal energy;
« is the volume concentration of thegas; ! is the specific heat of vaporization; and J, and J° are, respective-
ly, the observed rates of condensation and vaporization in unit volume of the mixture,

If the relations are given that reflect the force interaction f, the heat exchange q, and the mass ex-
change J, and J°, and if the equations of state of the phases are also given, the system (1,1) is closed. For
f and gq, we can take the following linear relations, which are valid for laminar flow around an isolated
sphere (for sutficiently small numbers NRe of the relative flow):
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Here p, is the viscosity; k, is the coetficient of heat transfer of the material of the firstphase; py°
is the density of the material of the drops (particles) and d is their diameter.

The effect of the volume of the particles on the frictional force between the phases in the region of
small NR, can be taken into account by means of an additional factor [6, 7]:

p=(1]g) s (1.3)

The equations of the kinetics of the phase transitions when there are small superheatings ot super-
coolings (T; — T,)/T, can be written in the form [1]
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where F, and F° are coefficients determined experimentally or by other considerations.

Note that these equations can be used if the linear dimension of the perturbations (the wavelength) is
much greater than the drop diameter and the perturbation amplitudes are sufficiently small.

2. For a cone-component two-phase medium we introduce the following equations of state of the
phases:
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Here @ is the velocity of sound in the first phase and 7 is the reduced time in units of length,

Linearizing (2.1) and using (1.1)-(1.4) and (2.2)-(2.4), we obtain the following system of equations
(one-dimensional case):
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Here and in what follows, the primes denote the total derivatives with respect to the dimensionless
pressure; Ty, TT, 7° and 7, are reduced relaxation times (with the dimensions of a length), '

Let us consider the propagation of plane periodic waves in'a medium described by the equations (2.5);
we shall seek the solutions of this system in the form of a damped traveling wave exp[i(kx — wt)]. The condi-
tion for the existence of a nontrivial solution of this type leads to the following relationship between the wave
vector and the dimensionless perturbation frequency n(n = wTy fa):
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Making a passage to the limit from (2.6) we obtain relations for the eguilibrium a®(3) — 0) and frozen
af('n —~ =} velocities of sound in a gas-suspension mixture with phase transitions:
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If @ =1 (m = 0) we have a® =a,® and of =a,/. It canbe seen from (2.7) that a8 = af, since a® corre-
sponds to a wave for which the mixture is saturated (T, =T, =T,); but if @ ~1 and the wave amplitude ig
nonvanishing, there may be superheated vapor behind the wave (m =0, @ =1, T; > T;). Allowance for this

circumstance eliminates the apparent discrepancy between ,® and alf . In a pure vapor, the equilibrium and
frozen velocities of sound are the same and equal to a,f.

3. A similar treatment applies to the simpler case of a gas-suspension mixture without phase tran-
sition when the equations of state of the phases have the form

p=p:"ByTy, ig=culy, p°=const, e =267, {¢p1, co = const) {3.1)

In this case we have the following relationship between the wave number and the dimensionless per-~
turbation frequency:
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Here I is the effective adiabatic exponent of the mixture and C; is the heat capacity of unit mass of
the mixture at constant volume,

The expressions for the equilibrium and frozen velocities of sound in such gas suspensions have the
form
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4. It is of interest to estimate the effect of phase transitions on the nature of the dispersion relations.

The curves plotted in Figs. 1 and 2 show how the phase velocity Ub and the damping constant § depend
on the frequency of the external perturbation,

The curves are plotted for different values of the coefficient F =F° = F; and different vapor volumes
in a two-phase steam-water mixture with initial pressure p; =10 bar with the following initial thermodynam-
ic data: a=(ypypy")/2= 502 m/sec, R, = 429.5 J kg - deg™; i =16.05-10"° N-sec m™, k, = 314,4 - 10"
Wenil. (‘i;r:g"ﬂ ¢, =4.40-10%J-kg™ .deg”!. The curves we have plotted correspond to a particle diameter
of d =107 m,

The calculations show that if F = 107 kg-sec-m™ and F=<10"kg.sec- m™ the process is virtually
independent of the value of this parameter in the considered range of frequencies. At low frequencies {1 —
0) and also at fairly high frequencies () — =) the effect of F may become more pronounced, Note that the
value of F can be determined from a measurement of the propagation velocity and the damping constant of
a weak perturbation in a single-component two-phase mixture, However, the absence of reliably tested
experimental data prevents us from comparing our results with experimental data.

As the volume of the drops increases, the effect of a departure from phase and temperature equilib-
rium increases but on the whole remains fairly small. As a rule, the most important process effecting
the relations is the friction between the phases. However, as the pressure of the mixture increases, the
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importance of friction decreases. In the limit r — 1 there is no departure from velocity equilibrium and
the dispersion and dissipation due to viscosity vanish.

The relative intensity of the dissipation processes also depends on the relations between the relaxa-
tion times of the processes under consideration. Note that the relations between the velocity and tempera-
ture relaxation times and the phase-transition relaxation times are determined by the extent to which the
medium is dispersive, Under the assumptions we have made concerning the kinetics of vaporization and
condensation, a decrease in the dimensions of the dispersed phase is accompanied by an increase in the
relative contribution of phase transitions to the energy dissipation and this process may become predom-
inant if the drops have sufficiently small diameters, The effect of mass exchange between the phases on
the propagation of a perturbation in a two-phase medium can be analyzed directly by using a single-veloc-
ity and single-temperature mode! of the medium. Note that whereas the phase-transition entails tempera-
ture equilibrium the converse is not, in general, true. If the temperatures of the phases are in equilibrium,
nonequilibrium phase transitions can nevertheless occur in a wave resulting in dispersion and dissipation.
The dispersion relation corresponding to this case has the form

\ et m) [ 20 (=) (G & Cbm) Ty | 5 — in (Q + Com) ]
K*=n Tyt 2mLty [ tg — M (C1+ mC)

Q=G+ (1—=08)(C—L/(1—T1))

Here G and the equilibrium velocity of propagation of a perturbation are calculated in accordance with
(2.7). For the velocity of sound frozen with respect to mass exchange we have the expression

(4.1)
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It can be seen from (2.7) and (4.2) that af¢ a,.f, since a*fis calculated from a mixture that has veloc~
ity and temperature equilibrium. In a pure vapor (o =1) we have alf =a 1*f.

Some estimates show that the coefficients F in the linear relations for the rates of the phase transi-
tions are very large. Therefore, at sufficiently low frequencies of the external perturbation a single-com-~
ponent two-phase medium has an equilibrium phase composition and satisfies the condition of equality of
the phase temperatures. In this case, dispersion and dissipation are due exclusively to the viscous inter-
action of the phases and the dispersion relation is
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Note that for r < 0.1 allowance for the added mass does not appreciably affect the dispersion rela-
tions. Taking into account this observation, we write the dispersion relation (3.2) in the form
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Any small perturbation of arbitrary profile cém be obtained by superimposing harmonic waves, In

accordance with the general results given, for example, in [8] for the case of a reacting gas,we can assert
that the leading edge of an arbitrary pulse moves with velocity af and is damped exponentially with the ex-
ponent (—6/%),

Finally, note that the expressions (2.7) and (3.3) for the equilibrium and frozen velocities of sound

agree with the relations that follow from a consideration of the conditions of existence of densification
waves in two-phase media [8].
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